Learning Target: I can use trigonometric inverses to find angle measures of a right triangle.

P. 74-75 Using Inverse Trig to Find Angles

Warm Up

A ladder that is 15 feet long is leaning against a wall. The ladder makes an angle of 70° with the ground. Determine how high up the wall the ladder reaches. Draw a picture, round your answer to the

$$
\begin{gathered}
\sin 70^{\circ}=\frac{x}{15} \\
15 \cdot \sin 70=x \\
x=14.1 \mathrm{ft}
\end{gathered}
$$

We use the Inverse Trigonometric Functions to find a missing angle when given 2 sides of a right triangle

Calculator Entry:

SIN
COS
TAN

Fraction
or
Number

Enter

SIN^{-1}
 COS^{-1}
 TAN^{-1}

Calculator Entry:
2nd

SIN COS TAN

Fraction or Number

Use the correct inverse function of your calculator to solve for the missing angle in degrees. If necessary, round to the nearest tenth.

1) $\boldsymbol{\operatorname { s i n }} A=\frac{5}{8}$

$$
\begin{aligned}
& A=\sin ^{-1}\left(\frac{5}{8}\right) \\
& A=38.7^{\circ}
\end{aligned}
$$

2) $\boldsymbol{\operatorname { t a n }} C=\frac{2}{9}$
3) $\cos B=0.21$
$c=12.5^{\circ}$

$$
\mathrm{B}=77.9^{\circ}
$$

Find the measure of angles A and B. If necessary, round to the nearest tenth.
4)

$$
\begin{aligned}
& A=53.1^{\circ} \\
& B=36.9^{\circ}
\end{aligned}
$$

6) A 16-foot ladder is propped against a building. It reaches a height of 13 feet above the base of the building. What angle does it form with the ground? Draw a picture, set up the equation, then solve. Round to the nearest tenth.

$$
\begin{aligned}
& \sin x=\frac{13}{16} \\
& x=\sin ^{-1}\left(\frac{13}{16}\right)
\end{aligned}
$$

$$
x=54.3^{\circ}
$$

Assignment

Finding Missing Angles with Inverse Trig Functions

Textbook Return Wednesday!

