Guiding Question: Can I apply my knowledge of trigonometry to solve triangles?
p.70-71 Trigonometry Chapter 14

Solve for the unknown sides:

Opposite/Adjacent/Hypotenuse
To understand sine, cosine, and tangent. you must be able to find
nd label sides as adjacent or opposite of an angle.

Sine (sin) / Cosine (cos) / Tangent (tan)
To remember the trigonometric ratio we can use the following saying:

$\sin =\frac{\text { opposite }}{\text { hypotenuse }} \cos =\frac{\text { adjacent } \mathrm{a} \text { an }}{\text { hypotenuse }}=\frac{\text { opposite }}{\text { adjacent }}$
Using the triangle below express sine-cosine-tangent.

$\sin A=\frac{3}{5}$
$\sin B=\frac{4}{5}$
$\cos A=\frac{4}{5}$
$\cos B=\frac{3}{5}$
$\tan A=\frac{3}{4}$
$\tan B=\frac{4}{3}$

Examples: Use the triangle below to find \sin , \cos, tan. NO DECIMALS!

1. $\sin A=\frac{24}{25}$
2. $\cos A=\frac{7}{25}$
3. $\tan A=\frac{24}{7}$
4. $\sin B=\frac{7}{25}$

Finding Missing Sides
You can find trigonometric ratios using your calculator!
**** Make sure your calculator is in

Examples: Find the values using your calculator
7. $\sin 45^{\circ} \rightarrow 7 \rightarrow+1$
8. $\cos 87^{\circ}$
9. $\tan 37^{\circ}$
.553

Examples: Find the missing side lengths.
10.

$$
2 \tan 28^{\circ}=\frac{x}{32}
$$

$$
\because x \cdot \cos \theta^{2}=\frac{1 c}{x} \cdot x
$$

$$
32 \cdot \tan 28=x
$$

$$
x \cdot(\cos 64)=15
$$

$$
17.0=x
$$

$$
x=\frac{15}{(\cos 64)}
$$

$$
x=34.2
$$

$$
\begin{aligned}
& x \cdot \sin 40^{\circ}=\frac{16}{x} \cdot x \cdot \sin 34=\frac{10}{x} \cdot x \\
& x=\frac{16}{\sin 40} \\
& x=\frac{10}{\sin 34} \\
& x=24.9 \\
& x=17.9 \\
& y \cdot \tan 34=\frac{10}{y} \cdot y \\
& y=\frac{10}{\tan 34} \\
& y=14.8
\end{aligned}
$$

FkI\#77\#Nułrqrp hwul抽|\#\#\#Sudfulfh

