9.3 Geometric Sequences
a. I can identify a geometric sequence and state its common ratio.
b. I can write an explicit rule for a geometric sequence.

1. Given a term and common ratio.
2. Given a sequence.
c. I can find the nth term of a geometric sequence.
p. 46-47 Geometric Sequences 9.3
p. 46-47 Geometric Sequences
9.3

Warm-up : Write the sequence in your notes \{ 20, 14, $8, \ldots$
p. 46
a. Identify the common difference.

$$
d=-6
$$

b. Write the Explicit Formula

$$
a_{n}=20+(n-1)(-6)
$$

c. Find the 75th term using your Explicit Formula

$$
\begin{aligned}
& a_{75}=20+(75-1)(-6) \\
& a_{75}=-424
\end{aligned}
$$

Yesterday we learned about arithmetic sequences.

Are the following Arithmetic sequences? Explain why or why not.
$\{1,2,3,4,5, \ldots \quad d=1$
$\{1,2,4,8,16, \ldots$

Are the following Arithmetic sequences? Explain why or why not.
$\{e, 2 e, 3 e, 4 e, 5 e, \ldots$
$\left\{e, e^{2}, e^{3}, e^{4}, e^{5}, \ldots\right.$

Geometric Sequence: a sequence where hdfk\#\#hup \#dinhu\#wkh\#nvu抽\# found by multiplying the previous term by d\#frquwdqwi Frp p rq\#\#duar\#nu: the Córstarit you multiply by to get the next whup I
\rx\#fdq\#ilgg\#wkh\#Frp p rq\#\#Jdwir\#e|\#gkblqj\#dq|\#whup \#q\#\#wh\#\#htxhqfh\#

$$
a_{n}=a_{1}(r)^{(n-1)}
$$

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{\text {th }} \text { term in the sequence }
$$

$$
a_{1}=\text { first term in the sequence }
$$

$$
\mathrm{r}=\text { common ratio }
$$

$\mathrm{n}=\#$ of term in the sequence

1. Determine the next terms of the geometric sequence then write the Explicit Formula

$$
\begin{aligned}
& \{5,15,45,135 \\
& a_{1}=\frac{505}{3}, \frac{1215}{3}, \ldots \\
& r=3
\end{aligned} \quad \begin{aligned}
& \text { Explicit Formula } \\
& a_{n}=5 \cdot(3)^{(n-1)}
\end{aligned}
$$

Use the Explicit Formula to find the $9^{\text {th }}$ term

$$
\begin{aligned}
& a_{9}=5 \\
& a_{9}=32,805
\end{aligned}
$$

2. Determine the next terms of the geometric sequence then write the Explicit Formula

$$
\begin{aligned}
& a_{1}=-3 \\
& r=-3
\end{aligned} \quad \begin{aligned}
& \text { Explicit Formula } \\
& n=(-3)(-3)^{(n-1)}
\end{aligned}
$$

Use the Explicit Formula to find the $9^{\text {th }}$ term

$$
a_{q}=(-3)(-3)^{(9-1)}=-\left(a_{1}, 68\right.
$$

Find the $\mathbf{n}^{\text {th }}$ term using an Explicit Formula
3.

$$
\begin{aligned}
& a_{1}=200 \quad r=\frac{1}{2}(n-1=7 \\
& a_{n}=200\left(\frac{2}{2} n^{n-1}\right)^{(7-1)} \\
& a_{7}=200\left(\frac{1}{2}\right) \\
& a_{7}=3.125
\end{aligned}
$$

4.

$$
\begin{aligned}
& a_{1}=2 \quad r=3 \quad n=15 \\
& a_{n}=2(3)^{n-1} \\
& a_{15}=2(3)^{(15-1)} \\
& a_{15}=9,565,938
\end{aligned}
$$

Write a Explicit Formula for the nth term of the geometric sequence. Then find a_{8} using your formula.
p. 46
5. $5,10,20,40, \ldots$

$$
\begin{equation*}
r=2 \tag{p. 46}
\end{equation*}
$$

a.) Explicit Formula
b.) Find a_{8}

$$
a_{n}=5(2)^{n} a_{n}
$$

$$
a_{8}=5(2)^{\text {b.) Find } a_{8}}(8-1)
$$

$$
a_{8}=640
$$

6. $6,-30,150,-750, \ldots$

$$
r=-5
$$

a.) Explicit Formula

$$
a_{n}=(-5)^{(n-1)}
$$

$$
\begin{aligned}
& a_{8}=6(-5)^{\text {b.) Find as }}(8-1) \\
& a_{8}=-468,750
\end{aligned}
$$

Closing Question
You decide to try a new savings plan. You will deposit $\$ 10$ at the end of week 1, \$20 at the end of week 2, and \$40 at the end of week 3. You will continue this pattern.

a) What kind of sequence is this?

Arithmetic Geometric
b) Write an Explicit Formula that represents the sequence described

$$
a_{n}=10(2)^{n-1)}
$$

c) Using your formula from part B , how much money will you deposit in week 10 ?

$$
\left.a_{10}=10(2)=10-1\right)=5,20
$$

Is this a sustainable pattern of savings?

Practice!

