Probabilities Stations

You will be evaluating games of chance to help you understand probability. For each game, make a prediction AS A CLASS for what outcome will occur the most frequently. Perform the experiment 10 times. Record the actual outcomes on the first row labeled "Experiment." After conducting the experiment 10 times, place a checkmark under any outcomes that matched your prediction.

Before you begin, we will decide as a class our predictions for most frequent outcomes...

Station 1 Experiment: Flip a coin

Prediction for most frequent outcome (Circle one):

Experiment	1	0	4	3	0	0	2	4		
Place a \boldsymbol{V} under any outcome that matched your Prediction			V					V		

Station 3 Experiment: Pick a Card
Shuffle the deck of 52 cards, draw a card, record the suit, replace before repeating.

Station 4 Experiment: Pick a Chip
From a bag that contains 3 Yellow chips \& 2 Red chips, draw a chip, record the color, and replace it before repeating.
Prediction for most frequent outcome (Circle one):

| Experiment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Place a \checkmark under any
outcome that matched
your Prediction

Station 5 Experiment: Pick a Chip
From a bag that contains 1 Yellow chips \& 4 Red chips, draw a chip, record the color, and replace it before repeating.
Prediction for most frequent outcome (Circle one):
 Yellow

Experiment										
Place a V under any outcome that matched your Prediction										

Let's fill in the first 2 columns of the table below

Theoretical probability is what we expect to happen, whereas Experimental probability is what actually happens when we try it out. Find the Theoretical Probability and write as a fraction and percentage in the table below. Using your results from your Stations, write the Experimental Probability as a fraction and as a percentage.

Experiment	Favorable Outcome Decided as a Class	Theoretical Probability \# of Favorable Outcomes Total Possible Outcomes	Experimental Probability
Flip a Coin	1	$\frac{1}{2} \cdot 5$	
Roll a Die	1	$\frac{1}{6} \cdot 16$	
Draw a Card		$\frac{13}{\sqrt{2}} \cdot 25$	
Draw a Chip (Station 4)		$\frac{3}{5} \cdot 6$	
Draw a Chip (Station 5)		$\frac{4}{5} \cdot 8$	

Your turn!

Complete each station, then report your findings to me.

After you finish, complete the table and the questions on the last page.

Class Results...

Experiment	Favorable Outcome Decided as a Class	Theoretical Probability \# of Favorable Outcomes Total Possible Outcomes	Experimental Probability $\frac{\text { \# of Actual Favorable Outcomes }}{\text { Total Possible Outcomes }}$
Flip a Coin	1	$\frac{1}{2} \cdot 5$	$\frac{58}{120} \cdot 48$
Roll a Die	1	$\frac{1}{6} \cdot 16$	$31 / 20 \cdot 26$
Draw a Card		$\frac{13}{52} \cdot 25$	$\frac{30}{120} \cdot 25$
Draw a Chip (Station 4)		$\frac{3}{5} \cdot 6$	$\frac{74}{120} \cdot 62$
Draw a Chip (Station 5)		$\frac{4}{5} \cdot 8$	$\frac{83}{120} \cdot 6$

2. Observe the Classroom Results Provided by your teacher. Are the Experimental Probabilities the same or different from your results in your table? Why or why not?
3. What do you think will happen to our Experimental Probabilities as we perform more and more experiments?

Practice - Find the Probabilities of the following situations:
4. A standard die is thrown. What is the probability of landing an even number?
5. A standard die is thrown. What is the probability of landing a number greater than 2 ?

6. A card is chosen at random from a deck of 52 playing cards.
a) What is the probability the card chosen is a Queen of Spades?

b) What is the probability the card chosen is Red?
 .5
c) What is the probability the card is a Face card? (Jack, Queen, King, or Ace)

$$
4 \cdot 4
$$

7. One of these names is to be drawn from a hat.

