7.1 Exploring Exponential Models
a. I can determine if an exponential equation or scenario is a growth or decay function
b. I can create and solve an exponential function to model a situation.

p. 26-27 Exponential Growth and Decay Models 7.1

Recall our standard forms of Exponential Growth and Decay

Growth Function

$$
y=a(b)^{x-h}+k
$$

where $b>1$

Decay Function

$$
y=a(b)^{x-h}+k
$$

where $0<b<1$

Formula for Exponential Growth

When a real life quantity increases by a fixed \% each year, the ending amount, y, after t years can be modeled with the following formula:

1) In 1990, the population of Stars Hollow was 6,191 and the population was increasing by 4% each year.
a. Using the Formula for Exponential Growth, write an equation that models the situation over any given time, t.

$$
y=\left(019 \cdot(1+.04)^{t}\right.
$$

b. Using your equation from part A, determine Stars Hollow population in 2001.

$$
\begin{gathered}
y=6191 \cdot(1+.04)^{11} \quad t=2001-1990 \\
y=9530.76 \quad \text { papa }=9,531
\end{gathered}
$$

Formula for Exponential Decay
When a real life quantity decreases by a fixed \% each year, the ending amount, y, after t years can be modeled by the following formula:

2) You buy a new car for $\$ 24,000$. The car depreciates by 16% each year.
a. Using the Formula for Exponential Decay, write an equation that models the

$$
y=2(10)(10)^{\text {situation over any given time, t. }}
$$

b. Using your equation from part A, determine the value of the car after 4 years.

$$
\begin{aligned}
& y=24000(1-.16)^{4} \\
& y=11948,9126 \\
& \text { Value }=11,948.91
\end{aligned}
$$

Homework - Worksheet Exp Growth/Decay Models - Day 1 HW

