P. 42-43 Solving Log Equations Applications

Get sheet from front to glue in to notebook!
Warm-up:

$$
\text { p. } 42
$$

Solve each equation by writing in logarithm form. Make sure you are first in exponential form. If necessary, round to the nearest hundredths.
1). $\frac{5.11^{86}}{5}=\frac{25}{5}$

$$
\begin{aligned}
& \frac{.56}{6}=\frac{6 x}{6} \quad x= \\
& \operatorname{og}_{2}(x+3)=\frac{15}{5}
\end{aligned}
$$

$$
\text { 3) } \begin{gathered}
\frac{5 \log _{2}(x+3)}{5}=\frac{15}{5} \\
\log _{2}(x+3)=3 \\
2^{3}=x+3 \\
8=x+3 \\
\frac{-3-3}{5=x}
\end{gathered}
$$

2.) $\begin{array}{r}11^{n-8}-5=54 \\ +5+5 \\ 1 r^{n-8}=59\end{array}$

$$
\log _{11} 59=n-8
$$

$$
\frac{\log 59}{\log 11}=n-8
$$

$$
\begin{aligned}
& \begin{array}{l}
1.7=n-8 \\
+8 \\
\hline 8
\end{array} \\
& \hline 9.7=n
\end{aligned}
$$

Remember the Zombies?
8) How long would it take for the zombies to take over the world if the population is $6,975,000,000$, we started with 5 zombies, and the exponential growth continues until the last human is turned. (Hint: set up memeater

$$
x=19.2 \text { days }
$$

2.) The local government projects that the town will grow at a constant rate of thirtytwo percent per year. At this rate, how many ye
population to be five times its current size?

$$
y=?(1+5)^{ \pm}
$$

$$
\frac{5 \phi}{P}=\frac{P(1+.32)^{t}}{R}
$$

$$
S=(1.32)^{t}
$$

$$
\log _{1.32} 5=t \quad t=5.8
$$

$$
\begin{equation*}
\frac{\log 5}{\log 1.32}=t \tag{years}
\end{equation*}
$$

$$
\begin{aligned}
& \text { 1.) You drink a beverage with } 120 \mathrm{mg} \text { of caffeine. The caffeine in your system } \\
& \begin{array}{l}
\text { decreases by about } 12 \% \text { each hour. How many hours will it take } f \\
10 \mathrm{mg} \text { of caffeine from the beverage remaining in your system? }
\end{array} \\
& y=P(1-r)^{t} \\
& \frac{10}{120}=\frac{120 \cdot(1-.12)^{t}}{120} \\
& .08 \overline{3}=(.88)^{t} \\
& \log _{.88}(.083)=t \\
& \frac{\log (.083)}{\log (.88)}=t \\
& t=19.5 \text { hours }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { Pracice! }}{\$} \\
& \begin{array}{l}
y=P e^{r t} \\
y=P\left(1+\frac{r}{n}\right)^{(n-t)}
\end{array}
\end{aligned} \begin{aligned}
& y=P(1-r)^{t} \\
& y=P(1+r)^{t}
\end{aligned}
$$

