p. 38-39 Solving Log Equations- One to One Property

Warm-up:
Use the Change Of Base Formula to rewrite each expression using common logs, then evaluate expression.
1.) $\log _{1} 16 \log (16) \div \log (3)=2.52$
2.) $\log _{2} 15 \frac{\log 15}{\log 2}=3.91$
3.) $\log _{7} 8$

$$
\frac{\log 8}{\log 7}=1.07
$$

$$
\begin{gathered}
\text { (13) } \log _{8}(x+25)=2 \\
8^{2}=x+25 \\
64=x+25 \\
\frac{-25}{39}=x
\end{gathered}
$$

One to one property of logarithms-Notes
If $b^{x}=b^{y}$ then $x=y$ One to one property.
Using this property, solve the following equations.

1.) $6^{2 x-3}=6^{3(x+3)}$

$$
2 x-3=2+2
$$

$$
\begin{aligned}
& 2 x-3=3 x+9 \\
&-2 x-2 x \\
& \hline-3=x+9 \\
& \frac{-9}{-12}=x
\end{aligned}
$$

2.) $2^{3 a}=$
$3 a=-2 a-\Rightarrow$
$3 a=2 a+3$
$\frac{-2 a-2 a}{a=3}$

4.) $\begin{aligned} 5^{3 x+1} & =625 \\ 5^{3 x+1} & =5^{4}\end{aligned}$

5.) $\log _{9}(-5 x-10)=\log _{9}(-4 x+4)$

$$
\begin{aligned}
&-5 x-10=-4 x+4 \\
&+5 x \\
& \hline-10=x \pm 4 \\
&-14=x
\end{aligned}
$$

6.) $\log \left(20+x^{2}\right)=\log \left(2 x^{2}-x\right)$

$$
\begin{aligned}
& \begin{array}{l}
20+x^{2}=2 x^{2}-x \\
-x^{2} \\
20
\end{array} x^{2}-x^{2}-x \\
& -20 \\
& \hline 0=x^{2}-x-20 \\
& -5)^{-1} 4 \\
& 0=(x-5)(x+4) \\
& x-5=0 \text { OR } x+4=0 \\
& x=5 \text { OR } x=-4
\end{aligned}
$$

$$
\text { 7.) } \begin{aligned}
\log _{5}(2 x-6) & =\log _{5} x \\
2 x-6 & =x \\
-\frac{2 x}{-6} & =\frac{-x}{-1} \\
\frac{-1}{-1} & =x
\end{aligned}
$$

Practice - Worksheet

Do \#1-12

