Warm-up:
Solve the following equation for x .

$$
\begin{aligned}
& 5^{2 x}=130 \\
& \log _{5} 130=2 x \\
& \frac{\log _{130}}{\log 5}=\frac{3.02}{2}=\frac{2 x}{2} \\
& x=1.51
\end{aligned}
$$

Homework....

We have discussed how to solve equations by rewriting to exponential form and to logarithmic form. We have also learned how to evaluate logs using Change of Base Formula. There are 2 special bases we need to be familiar with in order to solve equations.

The "common," or base- $\mathbf{1 0} \log$ $\log _{10} x$ is often written as $\log x$ If a \log has no base written, assume that the base is 10.	The "natural", or base- $\boldsymbol{e} \log$ $\log _{e} x$ is often written as $\ln x$ If you see " \ln " assume that the base is e.
$\log _{\mathbf{1 0}} \mathbf{1 0 0}$	$\log _{e} 8$
can be written as	

Examples:
1)
$\log x=5$ $\log _{10} x=5$ $10^{5}=x$ $x=100,000$
3)

$$
5=e^{y}
$$

$$
\begin{array}{r}
\log _{2} 5=y \\
\ln 5=y \\
y=1.61
\end{array}
$$

${ }^{2)} \log y=2$ $10^{2}=y$
$100=y$
4)
$\ln x=6$ $\log _{e} x=6$
$e^{6}=x$
$403.43=x$

Part I - Write each equation in exponential form
1.) $\begin{array}{ll}\log 1000=3 & \text { 2.) } \quad \ln e^{5}=5\end{array}$
3.) $\quad \log _{5} 125=3$
\qquad
5.) $\log 0.001=-3$
6.) $\log 10=1$
\qquad
Part II - Write each equation in logarithmic form
$\begin{array}{ll}\text { 7.) } 3^{4}=81 & \text { 8.) } 10^{5}=100,000\end{array}$
\qquad
\qquad
11.) $e^{1}=e$
\qquad
10.) $10^{-2}=0.01$
\qquad
12.) $4^{3}=64$

Part III - Mixed Practice Solving. If necessary, round to the nearest hundredths.
13.) $\log _{8}(x+25)=2$
14.) $12 \log (2 x-30)=36$
15.) $\ln (3 x)=2$
16.) $-3 \log _{2}(x-3)=-18 \quad$ 17.) $\quad \log x=1.7$
18.) $40 e^{125 x}-200=2000$
19.) $7 \ln 2 x=21$
20.)

