p. 36-37 Solving Log Equations Special Bases 7.5

Warm-up: p. 36

Solve the following equation for x.

$$5^{2x} = 130$$

$$\log 130 = 2x$$

$$\log 130 = 3.02 = \frac{2x}{2}$$

$$\log 5$$

$$x = 1.5$$

Homework....

p. 37

We have discussed how to solve equations by rewriting to exponential form and to logarithmic form. We have also learned how to evaluate logs using Change of Base Formula. There are 2 special bases we need to be familiar with in order to solve equations.

The "common," or base-10 log $log_{10} x$ is often written as $log x$	The "natural", or base- $e \log \log_e x$ is often written as $\ln x$
If a log has no base written, assume that the base is 10.	If you see "ln" assume that the base is e.
log ₁₀ 100	log _e 8
can be written as	can be written as

Examples:

p. 36

$$\log x = 5$$

$$\log y = 2$$

$$|0|^2 = 4$$

$$|0| = 4$$

$$5 = e^{y}$$
 $|09e5 = 4$
 $|05 = 4$
 $|5 = 4$
 $|5 = 6$

$$\ln x = 6$$
 $\log_e x = 6$
 $e^6 = x$
 $403.43 = x$

Algebra 2 In-class Homework Solving Equations – Special Bases

_ Period: _

Change of Base Formula

LOGARITHMIC FORM

EXPONENTIAL FORM

$$\log_b x = \frac{\log x}{\log b}$$

$$\log_b y = x$$

$$b^x = y$$

The "common," or base-10 log	The "natural", or base-e log
$\log_{10} x$ is often written as $\log x$	$\log_e x$ is often written as $\ln x$
a log has no base written, assume that the base is 10.	If you see " \ln " assume that the base is e.
log ₁₀ 100	log _e 8
can be written as	can be written as

Part I – Write each equation in exponential form 1.) $\log 1000 = 3$ 2.) $\ln e^5 = 5$

- 3.) $\log_5 125 = 3$

- **4.)** ln 1 = 0
- **5.)** $\log 0.001 = -3$
- **6.)** $\log 10 = 1$

Part II – Write each equation in logarithmic form 7.) $3^4 = 81$ 8.) $10^5 = 100,000$

- 9.) $e^0 = 1$

- **10.)** $10^{-2} = 0.01$
- **11.)** $e^1 = e$
- 12.) $4^3 = 64$

Part III - Mixed Practice Solving. If necessary, round to the nearest hundredths.

- **13.)** $\log_8(x+25)=2$ **14.)** $12\log(2x-30)=36$ **15.)** $\ln(3x)=2$

16.)
$$-3\log_2(x-3) = -18$$
 17.) $\log x = 1.7$ **18.)** $40e^{1.25x} - 200 = 2000$

19.)
$$7 \ln 2x = 21$$

20.)
$$10\log_8(4x-12)=30$$
 21.) $100 \cdot e^{0.2x}=300$

21.)
$$100 \cdot e^{0.2x} = 3$$