Let's look at the relationship between the functions $y=2^{x}$ and $y=\left(\frac{1}{2}\right)^{x}$ by looking at their graphs.

What questions do you have?
Chapter 7 Target 1 Practice
Graph the function on the coordinate plane and fill in all the information.

1. Graph: $f(x)=-2^{x}+4$

Transformations:
Horizontal asymptote:
y-intercept:
Domain:
Range:

3. Graph: $f(x)=3^{x+1}+3$

Transformations:
Horizontal asymptote:
y-intercept:
Domain:
Range:

2. Graph: $\quad f(x)=3 \cdot 2^{x}+1$

Transformations:
Horizontal asymptote:
y-intercept:
Domain:
Range:

4. Graph: $f(x)=-2 \cdot 3^{x-1}-2$ Transformations:
Horizontal asymptote:
y-intercept:
Domain:
Range:
p. 24-25 Exponential Decay Graphs.notebook

1. Graph: $f(x)=3\left(\frac{1}{2}\right)^{x}$

Transformations: stretch 3
Horizontal asymptote: $y=0$
y-intercept:
Domain: (3)
Domain:
Range: $(-\infty,+\infty)$
Range: $(\rightarrow$,

3. Graph: $f(x)=-\left(\frac{1}{4}\right)^{x+1}+2$

Transformations: flip;UP2; Heft I
Horizontal asymptote: $y=2$ y-intercept: $(0,1.75)^{2}$
Domain: $(-\infty,+\infty)$
Range:

2. Graph: $\quad f(x)=\left(\frac{1}{3}\right)^{x+2}+1$

Transformations: |eta; Up
Horizontal asymptote: $\zeta=1$
D-intercept: $(0,1,1)$
Domain: $(-\infty,+\infty)$
4. Graph: $\left.f(x)=-2\left(\frac{z}{3}\right)^{x-1}\right)_{3}$ stretch 2 is

Transformations: flip; righifidawn 3
$\begin{aligned} & \text { Horizontal asymptote } \\ & \text { Domain: } \\ & \text { Dorcept: }\end{aligned}(0)=-3$
Range:

