p. 32-33 Solving Log Equations by Rewriting 7.4

Fill in the Blanks

$$
\text { p. } 33
$$

1. $2^{\boxed{s}}=32$
2. $3^{\text {国 }}=\frac{1}{9}$
3. $28^{\square}=1$
4. $10^{3}=1,000$

Exponential equations can be rewritten as logarithm equations
What is a logarithm?

Exponential Form

$$
b^{x}=y
$$

$$
4^{2}=16
$$

Logarithmic Form

$$
\log _{b} y=x
$$

$$
\log _{4} 16=2
$$

Rewrite in exponential form.

1) $\log _{5} 625=4$
2) $\log _{2} \frac{1}{8}=-3$
3) $\log _{5} 125=3$
$5^{4}=625$
$2^{-3}=\frac{1}{8}$

Rewrite in logarithmic form.
4) $10^{4}=10,000$
5) $6^{-2}=\frac{1}{36}$

Solve each equation by rewriting to exponential for p. 32
Note: your equation must first be in logarithm form

1) $\log _{3} x=5$

$$
\begin{gathered}
3^{5}=x \\
243=x
\end{gathered}
$$

3) $\log _{5}(x+10)=2$

$$
5^{2}=x+10
$$

2)

$$
\begin{gathered}
\frac{4 \log _{2} x}{4}=\frac{-12}{4} \\
\log _{2} x=-3 \\
2^{-3}=x
\end{gathered}
$$

$\begin{aligned} x=.125 & =\frac{1}{8} \\ \text { 4) } \frac{\log }{10}(x-400) & =\frac{9}{3}\end{aligned}$

$$
\begin{aligned}
& 25=x+10 \\
& \frac{-10}{}=15=x
\end{aligned}
$$

$$
\log _{10}(x-400)=3
$$

$$
10^{3}=x-400
$$

$$
\begin{aligned}
& 1000=x-400 \\
& +400
\end{aligned}
$$

$$
\frac{+400+400}{1400=x}
$$

$$
\begin{array}{lc}
\text { 5) } \log _{6}(2 x-1)=2 & \text { 6) } \\
6^{2}=2 x-1 & \frac{4 \log _{2}(2 x)}{4}=\frac{16}{4} \\
36=2 x-1 & \log _{2}(2 x)=4 \\
\frac{3}{+1}+1 & 2^{4}=2 x \\
\frac{37}{2}=\frac{2 x}{2} & \frac{16}{2}=\frac{2 x}{2} \\
18.5=x & 8=x
\end{array}
$$

