Learning Target

4.9 Quadratic Systems

I can solve a system consisting of a linear equation and ad quadratic equation by graphing.

p. 72-73 Solving Quadratic Systems 4.9

Warm-up: $y=a(x-h)^{2}+k \quad P .72$ Identify the vertex and axis of symmetry:
1)

$$
\begin{array}{ccc}
y=-3(x-1)^{2}+6 & { }^{2)} & y=(x+2)^{2}+4 \\
(1,6) & (h, k) & x=-2 \\
x=1 & x=h & (-2,4)
\end{array}
$$

A Linear Equation is an equation of a line.

A Quadratic Equation is the equation of a parabola and has at least one variable squared (such as x^{2})

And together they form a System of a Linear and a Quadratic Equation

Solutions

There are three possible cases:
p. 73

- No real solution (happens when they never intersect)
- One real solution (when the straight line just touches the quadratic)
- Two real solutions (like the example above)

Solve the given system of equations graphically.
1.) $y=2(x-3)^{2}-1$

$$
y=-2 x+9 \quad \text { ysmx +b }
$$

x	y
3	17
1	7
3	-1
5	7
6	7

Solution(s): $(1,7)+(4,1)$
p. 73

Learning Target

4.9 Quadratic Systems

I can solve a system consisting of a linear equation and a quadratic equation by graphing.

Homework - Solving Quadratic Systems

Review Question / Exit Slip

1. Given the function below, identify the key information

$$
y=3 x^{2}-12 x+10
$$

Opens: \qquad
Axis of Symmetry: \qquad
Vertex: \qquad

Maximum / Minimum: (Circle One)
Domain: \qquad
Range: \qquad

