Learning Target

4.9 Quadratic Systems
I can solve a system consisting of a linear equation and aquadratic equation by graphing.

p. 72-73 Solving Quadratic Systems

Warm-up:

$$y = a(x-h)^2 + k p.72$$

Identify the vertex and axis of symmetry:

1)
$$y = -3(x-1)^{2} + 6$$
 2) $y = (x+2)^{2} + 4$
 $(1,6)$ (h,k) $x = -2$
 $x = h$ $(-2,4)$

A Linear Equation is an equation of a line.

A Quadratic Equation is the equation of a parabola and has at least one variable squared (such as x^2)

And together they form a System of a Linear and a Quadratic Equation Solutions

There are three possible cases:

- p. 73
- No real solution (happens when they never intersect)
- One real solution (when the straight line just touches the quadratic)
- Two real solutions (like the example above)

Solve the given system of equations graphically.

1.)
$$y = 2(x-3)^2 - 1$$

$$y = -2x + 9$$

p. 73

x	У
-2	(
-3	-2
-4	-3
<u>-4</u>	-3 -2

Solution(s):

Learning Target

4.9 Quadratic Systems

I can solve a system consisting of a linear equation and a quadratic equation by graphing.

Homework - Solving Quadratic Systems

Review Question / Exit Slip

p. 72

1. Given the function below, identify the key information

$$y = 3x^2 - 12x + 10$$

Opens: _____

Axis of Symmetry:

Vertex: _____

Maximum / Minimum: (Circle One)

Domain:

Range:

