Guiding Question: Can I use the Quadratic Formula to solve quadratic equations?
p.70-71 Solving Quadratics by using the Quadratic Formula

Warm-up
Find solutions to the quadratic equation by FACTORING

$$
x^{2}-15 x+56=0
$$




$$
x(x-7)-8(x-7)
$$

$$
(x-7)(x-8)=0
$$

$$
x-7=0
$$

$$
x=\{7,8\}
$$

$$
x^{a r}-8=0
$$

Solving a Quadratic Equation with Two Real Solutions

$$
\text { Quadratic Formula: } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1.) Solve: $3 x^{2}+8 x=35$

Wite in standard form: $3 x^{2}+8 x-35=0$

$$
a=3 \quad b=8 \quad c=-35
$$

Substitute values into formula and simplify.

$$
\begin{aligned}
& x=\frac{-8 \pm \sqrt{\left(x^{2}-4\right.}}{2(3)} \\
& x=\frac{-8 \pm \sqrt{484}}{6} \\
& x=\frac{-8 \pm 22}{6} \\
& x=\frac{(-8+22)}{6} \text { se } x=\frac{(-8-22)}{6} \\
& x=2 . \overline{3} \times x=-5
\end{aligned}
$$

p.70-71 Solving Quadratics by using the Quadratic Formula

Solving a Quadratic Equation with One Real Solution
Quadratic Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
2.) Solve: $2 x^{2}+13=12 x-5$

Write in standard form: $2 x^{2}-12 x+18=0$

$$
a=1 \quad b=-6 \quad c=9 \quad 2\left(x^{2}-6 x+9\right)=0
$$

Substitute values into formula and simplify.

$$
\begin{aligned}
& x=\frac{-(-6) \pm \sqrt{(-1)^{2}-4(x)}}{2(1)} \\
& x=\frac{6 \pm \sqrt{0}}{2} \\
& x=\frac{6}{2}=3
\end{aligned}
$$

Solving a Quadratic Equation with Two Imaginary Solutions
Quadratic Formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
3.) Solve: $-2 x^{2}=-2 x+3$

Write in standard form: ${ }^{+2 x^{2}} 0=2 x^{2}-2 x+3$

$$
a=2 \quad b=-2 \quad c=3
$$

Substitute values into formula and simplify.

$$
\begin{aligned}
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(2)(3)}}{2(2)} \\
& x=\frac{2 \pm \sqrt{-20}}{4} \\
& x=\frac{2 \pm 2 i \sqrt{5}}{4}
\end{aligned}
$$

## Homework: Quadratic Formula Worksheet

