Warm-up : Simplify the radical expressions

SOLVING QUADRATIC EQUATIONS using Square Root Method

If the equation can be written in the form: $\mathrm{ax}^{2}+\mathrm{c}=0$

1) ISOLATE the SQUARED term
2) Take the square root of both sides (remember your +/-)
3) Continue Isolating the Variable, if necessary
4)

More Practice! Solve for x using the Square
Root method.
p. 68

$$
\text { 2) } \begin{array}{r}
(x+2)^{2}-10=90 \\
+10 \quad+10 \\
\hline \begin{array}{r}
(x+2)^{2}
\end{array}=\sqrt{100} \\
x+2= \pm 10 \\
-2=2
\end{array}
$$

More Practice! Solve for x using the Square Root method.
3)

$$
\begin{align*}
& 5 t^{2}-7=83 \\
& +7=+7
\end{aligned} \begin{aligned}
& \frac{5 t^{2}}{5}=\frac{90}{5} \tag{18}\\
& \sqrt{t^{2}}=518 \\
& t= \pm 3 \sqrt{2} \\
& t=\{-3 \sqrt{2}, 3 \sqrt{2}\}
\end{align*}
$$

More Practice! Solve for x using the Square
Root method.
4)

$$
\begin{aligned}
& \frac{3(x-5)^{2}}{3}=\frac{36}{3} \\
& \sqrt{(x-5)^{2}}=\sqrt{12} \\
& x-5= \pm 2 \sqrt{3} \\
& x=5 \pm 2 \sqrt{3}
\end{aligned}
$$

You try! Solve for x using the Square Root method.
p. 69

Remember: $\sqrt{-1}=\mathrm{i}$
5)

$$
\begin{aligned}
& \frac{2(x+1)^{2}}{2}=\frac{-50}{2} \\
& \sqrt{(x+1)^{2}}=\sqrt{-25} \\
& x+1= \pm 5 i \\
& x=-1 \pm 5 i
\end{aligned}
$$

You try! Solve for x using the Square Root method.

Remember: $\sqrt{-1}=\mathrm{i}$
6)

$$
\text { 6) } \begin{aligned}
-4(x-8)^{2}+10 & =262 \\
-10 & -10 \\
\hline \frac{-4(x-8)^{2}}{-4} & =\frac{252}{-4} \\
\sqrt{(x-8)^{2}} & =\sqrt{-63} \\
x-8 & = \pm 3 i \sqrt{7} \\
x & =8 \pm 3 i \sqrt{7}
\end{aligned}
$$

