78-79 Graphing Polynomials Multiplicity.notebook

5.2 Polynomials, Linear Factors and Zeros

 I can analyze the factored form of a polynomial and determine number of solutions and multiplicity.

b. I can write a polynomial function given its real zeros.

Warm-up:

Glue worksheet onto p. 78 (very top of page)

What are roots?

	p.79
Multiplicity Multiplicity is: A times a root app If a root/factor has an EVEN multiplicity: Graph will bound	e X:aus
If a root/factor has an ODD multiplicity of a crosses \times of the polynomial function $f(x) = (x-2)(x+3)^2$	XXIS (X+3)
The factor $(x-2)$ is listed time(s) so it has a multiplicity of E Therefore, at the root the graph will $\bigcirc \bigcirc $	VEN OD?
The factor $(x+3)$ is listed 2 time(s) so it has a multiplicity of EV. Therefore, at the root 3 the graph will bounce $x \in X$	VEN)ODD?

 $f(x) = (x - 7)(x - 1)^{2}$

p.78

78-79 Graphing Polynomials Multiplicity.notebook

Graph the polynomials from Factored Form

- 1. Determine what the roots/zeros are
- 2. Identify the multiplicity of each root
- 3. Use the leading coefficient and degree to graph

5.2 Polynomials, Linear Factors and Zeros

a. I can analyze the factored form of a polynomial and determine number of solutions and multiplicity.

b. I can write a polynomial function given its real zeros.

Homework: Worksheet (on next pages)

78-79 Graphing Polynomials Multiplicity.notebook

Algebra 2 Polynomials - Review Target 1-3	Name
Find the zeros, determine the degree, leadi behavior.	ng coefficient, graph and then determine the end
1. $f(x) = (x+4)(x-4)(x-8)$	1
Zeros:	
Degree:	•
Even/Odd:	
Leading Coefficient:	
$\begin{array}{ll} \text{End Behavior:} & x \to +\infty & f(x) \to \\ & x \to -\infty & f(x) \to \end{array}$	•••••••
2. $f(x) = (x+8)(x+3)(x-5)^2$	••••••••••••••••••••••••••••••••••••••
Zeros:	
Degree:	• • •
Even/Odd:	
Leading Coefficient:	
End Behavior: $\begin{array}{cc} x \to +\infty & f(x) \to \\ x \to -\infty & f(x) \to \end{array}$	

