Guiding Question: Can I apply my knowledge of radicals to solve radical and rational equations?

| p.18-19 Equations with Rational Exponents | 6.5 |
| :--- | :--- | :--- |

Exponential Form	Radical Form	Simplified Result
$8^{\frac{2}{3}}$	$\sqrt[3]{8^{2}}$	4
$\left.216^{\frac{2}{3}}\right)$	$\sqrt[3]{216^{2}}$	36
$16^{1 / 4}$	$\sqrt[4]{16}$	2
$1^{\frac{3}{5}}$	$\sqrt[2]{4^{3}}$	8
$64-3$	$\sqrt[3]{644^{2}}$	16
$32 \overline{5}$	$5 \longdiv { 1 2 0 ^ { 6 } }$	

Homework:
What questions do you have?

1. GET THE RADICAL BY ITSELF BY ADDING/SUBTRACTING CONSTANTS AND DIVIDING BY COEFFICIENTS
2. UNDO THE RADICAL BY RAISING EACH SIDE TO THE POWER (USE INDEX \# - or inverse of fraction *)
3. COMPLETE SOLVING
p. 19

Examples: Solve the rational equations $\frac{4}{3} \cdot \frac{3}{4}=1$
1)

2)

$X=27$
3. 5

$$
\begin{array}{r}
+8=48 \\
-8-8 \\
\hline
\end{array}
$$

$$
\begin{gathered}
\frac{5 x^{3 / 4}}{5}=\frac{40}{5} \\
\left(x^{3 / 4}\right)^{4 / 3}=(8)^{4 / 3} \\
x=16
\end{gathered}
$$

4)
5)

$$
\begin{aligned}
& +6=11 \\
& +4=10 \\
& -6-6 \\
& -4-4 \\
& \left(x^{1 / 4}\right)^{4 / 1}=(5)^{4 / 1} \quad\left(\left(4 x-20^{2}=(6)^{2}\right.\right. \\
& x=625 \\
& 4 x-8=36 \\
& \frac{+8+8}{1 x=17} \\
& x=11
\end{aligned}
$$

6.

$$
\begin{array}{r}
\begin{array}{r}
-3=125 \\
+3 \\
+3
\end{array} \\
\hline \frac{2(x+12)^{3 / 2}}{2}=\frac{128}{2} \\
\frac{((x+1}{2}=12 \\
x+12=16 \\
\frac{-12}{x}=4
\end{array}
$$

Closer:

$$
-3+(8-2 x)^{\frac{5}{4}}=29
$$

