38-39	Solving 3 Variable Systems	3.5
Warm up: Revie		
$\begin{aligned} & \text { Solve the system } \\ & 12(2 y-8)+y=29 \end{aligned}$		
$\begin{aligned} & x=(2 y-8) \\ & x=2(5)-8 \end{aligned} \begin{aligned} & \frac{24 y-96}{}=+96=29 \\ & +96 \\ & \hline \end{aligned}$		
$x=10-8 \quad 25 y=125$		
Sol. $(2,5) C^{\prime}: 12(2)+5 \stackrel{?}{=} 29$		
$24+5=29$		

Learning Objectives

3.5 Systems with Three Variables

I can solve systems in three variables using substitution.
I can model real-world application systems with three variables.

Solving Systems of 3 Equations
Solutions are written in the form (\underline{x}, y, z)
Solve the Simpliest equation first.
Use answer to find remaining variables.
Example 1:
(1) $\frac{-3 z}{-3}=\frac{12}{-3}$

$$
\begin{aligned}
& 5 x+2 y=0 \\
& 6 y+5 z=10
\end{aligned}
$$

$$
z=-4
$$

(2)

$$
\begin{array}{r}
6 y+5(-4)=10 \\
6 y-20=10 \\
+20+20 \\
\hline 6 y=30 \\
y=5
\end{array}
$$

(3)

$$
\begin{array}{r}
5 x+2(5)=0 \\
5 x+10=0 \\
-10=-10 \\
\hline 5 x=-10
\end{array}
$$

$$
x=-2 \quad 501 \cdot(-2,5,-4)
$$

Example 2:
Solve the system of equations

$$
\begin{aligned}
& x+y+3 z=7 \\
& 2 x-z=6 \\
& -7 z=-28
\end{aligned}
$$

(1)

$$
z=4
$$

$$
\begin{array}{cc}
\text { (2) } 2 x-4=6 & \text { (3) } 5+y+3(4)=7 \\
+4+4 & 5+y+12=7 \\
\frac{2 x}{2}=\frac{10}{2} & y+17=7 \\
x=5 & y=-10
\end{array}
$$

Homework - 3.5 Solving Systems of Equations in 3 variables.

Exit Slip

