p. 32-33 Solving Systems by Elimination 3.2

Warm-Up:
Solve the following system by elimination

What questions do you have?
Assignment p. 146 \# 31, 33, 35, 38, 39
Solve each system by elimination.
31. $\left\{\begin{aligned} 4 x-6 y & =-26 \\ -2 x+3 y & =13\end{aligned}\right.$
32. $\left\{\begin{aligned} 9 a-3 d & =3 \\ -3 a+d & =-1\end{aligned}\right.$
33. $\left\{\begin{array}{l}2 a+3 b=12 \\ 5 a-b=13\end{array}\right.$
34. $\left\{\begin{array}{l}2 x-3 y=6 \\ 6 x-9 y=9\end{array}\right.$
35. $\left\{\begin{array}{l}20 x+5 y=120 \\ 10 x+7.5 y=80\end{array}\right.$
36. $\left\{\begin{array}{r}6 x-2 y=11 \\ -9 x+3 y=16\end{array}\right.$
37. $\left\{\begin{array}{l}2 x-3 y=-1 \\ 3 x+4 y=8\end{array}\right.$
38. $\left\{\begin{array}{l}5 x-2 y=-19 \\ 2 x+3 y=0\end{array}\right.$
39. $\left\{\begin{array}{r}r+3 s=7 \\ 2 r-s=7\end{array}\right.$

1) A hotel has 260 rooms-some single and some doubles. The singles cost $\$ 35$ and the doubles cost $\$ 60$. Because of a math teachers' convention, all of the hotel rooms are occupied. The sales for this night are $\$ 14,000$. How many of each type of room does the hotel have?
Use Elimination Method to Solve.

$$
\begin{aligned}
& 35 x+60 y=14000 \\
& -35 .(x+y=260) \\
& 35 x+60 y=14000 \\
& -35 x-35 y=-9100 \\
& x+196=260 \quad 25 y=4900 \\
& x=64 \quad y=196 \\
& \text { single rods } \\
& \text { dower rus. } \\
& \text { Ck. } 35(64)+60(196)^{?}=14000 \\
& 2240+11760=14000 \\
& 14000=14000
\end{aligned}
$$

Systems with many or no solutions.

$$
\begin{aligned}
& -2 .)(x-3 y=7) \\
& 2 x-6 y=12 \\
& \text { iDSovtion No } O=-2 x+6 y=-14 \\
& 2 x-6 y=12
\end{aligned}
$$

3.)

$$
\begin{aligned}
& 2 x-6 y=12 \\
& -5 x+15 y=-30 \text { Y } \quad 0=0 \\
& \text { Infinite Solutions. }
\end{aligned}
$$

