
### **Today's Agenda**

Assemble your booklet

Have a pencil and calculator ready to go!

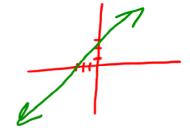
We will work on the booklet as a class

### **Linear Functions**



Range \_\_\_\_\_

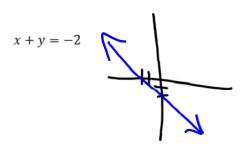
Increasing interval


Decreasing interval

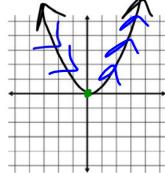
End behavior 
$$as \ x \to \infty, \quad f(x) \to \underline{\hspace{1cm}}$$
 
$$as \ x \to -\infty, \ f(x) \to \underline{\hspace{1cm}}$$

Other key characteristics

- HOY (horizontal line zero slope y = constant)
- VUX (vertical line undefined slope x = constant)


$$y = x + 3$$




$$-\frac{D:(-\infty,+\infty)}{R:(-\infty,+\infty)}$$

$$y = -3x$$

$$y = \frac{2}{3}x$$



## **Quadratic Functions**



| How do I recognize fr<br>EQUATION | GRAPH  | TABLE OF VALUES |
|-----------------------------------|--------|-----------------|
| W=X2                              | Ushape |                 |
| •                                 | a      | _               |

#### **Function booklet.notebook**

Domain

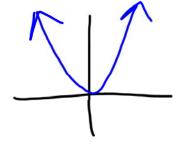
(-0)  $+\infty)$ 

Range

Increasing interval

Decreasing interval

End behavior


as 
$$x \to \infty$$
,  $f(x) \to$ \_\_\_\_  
as  $x \to -\infty$ ,  $f(x) \to$ \_\_\_\_

Other key characteristics

2

$$y = \frac{1}{2}x^2$$

$$y = 2x^2$$




 $\mathcal{D}:(-\infty,+\infty)$   $\mathcal{R}:[0,+\infty)$ 

$$y = (x - 2)^2$$

$$y = -x^2$$

# **Cubic Functions**



How do I recognize from a(n)...??

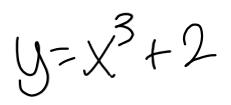
| EQUATION                  | GRAPH                  | TABLE OF VALUES |
|---------------------------|------------------------|-----------------|
| $\Omega = X_{\mathbf{z}}$ | SWOOSH<br>1/2 parabola |                 |

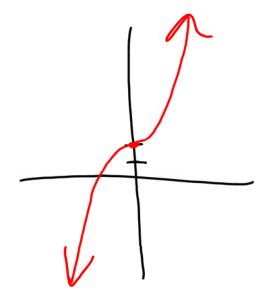
Domain

Range

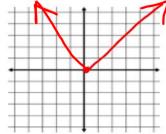
Increasing interval

Decreasing interval


End behavior


$$\frac{\sqrt{-\infty}+\infty}{-\infty}$$

as 
$$x \to \infty$$
,  $f(x) \to$ 


as 
$$x \to -\infty$$
,  $f(x) \to \underline{\hspace{1cm}}$ 

Other key characteristics





#### **Absolute Value Functions**



How do I recognize from g(n)...??

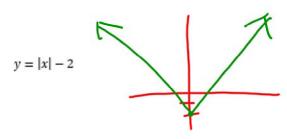
EQUATION GRAPH TABLE OF VALUES

Domain

Range

Increasing interval

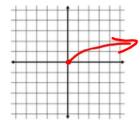
Decreasing interval

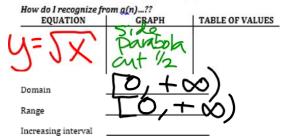

End behavior  $ax x \to ax$ ,  $f(x) \to \underline{\hspace{1cm}}$  $ax x \to -ax$ ,  $f(x) \to \underline{\hspace{1cm}}$ 

Other key characteristics

# Transformations of Absolute Value Functions

$$y = \frac{1}{2} |x| \text{ or } y = \left| \frac{1}{2} x \right|$$


$$y = |x - 2|$$




$$y = -|x|$$

•

## **Radical Functions**








Other key characteristics

#### Transformations of

#### **Radical Functions**



$$y = \sqrt{x} - 2$$

$$y = 2\sqrt{x}$$

$$y = -\sqrt{x}$$

Practice:

Review # 6, 7, 13 (on front)

# 18, 26 (on back)