p.92-93	Finding Zeros using Synthetic Division	6.5
Warm-up	p. 92	

Find the roots/zeros of the graph of the following equation. Then sketch the graph.

$x(x+4)-1(x+4) \quad \begin{aligned} x+4 & =0 \\ x & =-4\end{aligned}$

Graphing Polynomials Quiz GREEN worksheet

7) $4 x^{2} \quad 4 x$
 $4 x\left(\begin{array}{ll}x & 1\end{array}\right)$

9) $16 b^{2}-9$
$(4 b \mid 3)(4 b \quad 3)$
10) $15 n^{2}+21 n$
$3 n(5 n-7)$
11) $5 n^{2} \mid 60 n \quad 100$
$5(n+10)(n+2)$
$(3 n \mid 2)(3 n 2)$
12) $21 n^{2}+30 n+9$
$3(7 n+3)(n+1)$

We can find roots/zeros of higher degree polynomials by using SYNTHETIC DIVISION

Use synthetic division to find the polynomial function's Factored Form and Zeros. One zero has been given.

Fradred form:
$f(x)=(x-5)(x-1)(x+2)$
zeroes: $5,1,-2$

Use synthetic division to find the polynomial function's Factored Form and Zeros. One zero has been given.

$$
\begin{aligned}
& \text { 2.) } f(x)=x^{3}+2 x^{2}-x-2 ; \text { zero at } x=1 \\
& 1\left[\begin{array}{cccc}
1 & 2 & -1 & -2 \\
\downarrow & 1 & 3 & 2 \\
\hdashline 1 & 3 & 2 & 0 \\
x^{2} & x & c & R
\end{array}\right. \\
& x^{2}+3 x+2 \\
& (2)(x+1)(x-1) \\
& \text { zeroes: }-2,-1,1
\end{aligned}
$$

Use synthetic division to find the polynomial function's Factored Form and Zeros. One zero has been given.
3.) $f(x)=x^{3}+5 x^{2}+2 x-8$; zero at $x=-4$

$$
\text { FF: }(x+2)(x-1)(x+4)
$$

Zeroes: $-2,1,-4$

Homework

